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Under some conditions of temperature and flow an ice-water interface in the presence 
of a turbulent stream has been observed to be unstable. In this paper the source and 
the conditions for the instability were investigated for a well-defined turbulent 
boundary-layer flow. It was found that the instability resulted from the interaction 
that occurs between a wavy surface and a turbulent flow over it. Such an interaction 
results in a heat transfer variation which is 90 to 180 degrees out of phase with the 
surface wave shape - a result which is consistent with the calculations of Thorsness & 
Hanratty (1979a, b ) .  

The main factor controlling damping of the instability at  an ice-water interface 
was found to be the rate a t  which heat is conducted away from the interface into 
the ice. 

In the past it  has been found that when an ice layer is melting, that is when the 
heat conduction in the ice is small, the ice surface is highly unstable. In the present 
study it was found that for a sufficiently large temperature ratio (Tf- T,)/(T, - q), a 
steady-state ice layer is also unstable. Furthermore it is predicted, from the present 
observations, that a growing ice layer with a ratio of ice-side to water-side heat fluxes 
of up to 2.3 could be unstable. 

Under sufficiently unstable conditions waves on the ice surface grow to an amplitude 
a t  which flow separations occur near the wave crests. This results in a ‘rippled’ ice 
surface pattern very similar to the patterns observed on mobile bed surfaces (Kennedy 
1969) or surfaces which are being dissolved into a flowing stream (Allen 1971). The 
development of a ‘ rippled ’ ice surface results in a very substantial increase in the mean 
heat-transfer rate which would have an important influence on predictions of ice 
formation in the presence of a turbulent stream. 

1. Introduction 
Problems involving phase change in which convection is occurring in the melt have 

received much attention in recent years. The formation of an ice cover on a river, the 
freezing of a water pipe, and the solidification of a metal ingot are a few of the appli- 
cations in which an understanding of the interaction between phase change and 
convection is required. 

There are a number of aspects of these problems that may cause difficulties for 
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analysis. For example, in transient cases the moving interface makes the problem 
nonlinear. This nonlinear character of the problem has been the primary focus of 
analytical studies of phase change. It has been dealt with for phase change on a flat 
surface by Yen & Tien (1963), Libby & Chen (1965), Lapadula & Mueller (1966), 
Siegal & Savino (1966), Savino & Siegal (1969) and Beaubouef & Chapman (1967), 
and for phase change in a pipe by Zerkle & Sunderland (1968), ozisik & Mulligan 
(1969) and Stephan (1969). Also in the transient problems complications may result 
from the fact that the specific volumes of the solid and liquid phases are seldom the 
same. As a result phase change at an interface is equivalent to a suction or blowing a t  
the heat-transfer surface which may alter the heat-transfer coefficient. Merk (1954), 
Yen & Tien (1963), Savino, Zumdieck & Siege1 (1970) and Pozvonkov, Shurgalskii & 
Akselrod (1970) have studied this aspect of the problem for various natural and forced 
convection geometries. Generally it has been found that, if the Stefan number 
St = C ATIL, where C is the specific heat of the liquid, AT is the characteristic tem- 
perature difference in the liquid and L is the latent heat of fusion, is less than about 
0.1, the heat-transfer coefficient is not significantly altered. For many ice formation 
problems the Stefan number is less than this value. 

In  problems that involve convective heat transport to a phase-change interface 
another interesting complication can arise from the fact that the shape of the heat- 
transfer surface, that is the ice-water interface, is a dependent variable which is 
determined by the variation of the heat-transfer rate over the surface. This means 
that a mutual interaction can occur among the shape of the phase-change interface, 
the flow field over it, and the heat-transfer rate from the liquid to the interface. This 
interaction can occur a t  steady state as well as under transient conditions. Generally 
in theoretical analysis of phase-change problems this interaction is minimized by 
assuming that the ice layer is thin enough that to  a first approximation it does not 
affect the flow field. The interaction has, however, been analysed for some laminar 
flow problems such as ice formations near the leading edge of a plate (Hirata, Gilpin, 
Cheng & Gates 1979), in a parallel plate channel (Cheng & Wong 1977), in a pipe 
(Stephan 1968), and for the case of a water jet penetrating a block of ice (Gilpin & 
Lipsett 1978). Various problems which involve the interaction of free convection and 
the shape of a solidification front have also been treated (Kroegen & Ostrach 1974; 
Sparrow, Patanka & Ramadhyani 1977; Bathelt, Viskanta & Leidenfrost 1979). For 
these laminar-flow problems experimental observations, where available, have gener- 
ally confirmed the theoretical predictions. 

In  addition to the above laminar-flow pi oblems theoretical predictions have been 
made for some geometries in which a turbulent flow is assumed to exist in the melt 
(Genthner 1969; Shibani & ozisik 1977a, b;  Thomason, Mulligan & Everhart 1978). 
In  the turbulent flow predictions, as was done in the laminar flow cases, it is tacitly 
assumed that a ‘smooth ’ and stable interface will exist. Experimental observations 
are much more limited for flows near or above transition Reynolds numbers; however, 
where such observations have been made they indicate that the interaction of shape 
and flow is much stronger than in the laminar case and may result in unstable or 
otherwise unpredicted interface phenomena. For example Hirata, Gilpin & Cheng 
(1979) have observed that this interaction results in the formation of a flow separation 
and a step change in ice thickness at the transition point for flow over an ice layer 
grown on a cold plate. In  that study the transition point was observed to migrate 
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upstream on the plate to a position for which the Reynolds number was as much as 
an order of magnitude less than the transition point for a non-phase-change surface. 
The ice morphology in a pipe with flow near or above the transition Reynolds number 
is even more complex. In  that case Gilpin (1979) has observed that the ice forms in 
bands such that the flow passage has successive undulations in cross-section along the 
length of the pipe. Each ice band has a tapered upstream section which terminates in 
a flow separation and a sharp increase in flow cross-section. 

Of direct relevance to  the present problem are observations by Ashton (1972) and 
Hsu (1973) that an originally flat ice slab when melted by a turbulent channel flow 
develops a wavy or rippled surface. Their work was motivated by the observations of 
Carey (1966), Larsen (1969), and Ashton & Kennedy (1972) that showed that the 
bottom surface of ice covers on rivers often have a wavy nature. 

Melting interface instabilities are also observed in studies related to heat shield 
ablation (Edling & Ostrach 1970; Nachtsheim & Hagen 1972). This problem is some- 
what different in that three phases are present: a solid, a liquid film, and a flowing gas. 
For these problems the hydrodynamic instability of the film may be partially respon- 
sible for the observed behaviour. The ablation of a phase-change surface by direct 
sublimation into a turbulent air stream is, however, very similar to the present 
problem. John & Klapa (1968) have noted the ‘scalloped ’ surface pattern that results 
when snow or ice is ablated in this way. 

There are two types of interface instability not related to phase-change phenomena 
which appear to be very similar to the instability at  an ice-water interface. These are 
the ripple formation on a mobile bed surface and on a surface that is being dissolved 
into a flowing stream. Larsen (1969) and Kennedy (1969) have pointed out that the 
ripple patterns that occur on an ice-water interface and those that occur at  low 
velocities on a mobile-bed surface are very similar in wavelength, in wave profile, and 
in the fact that the rippIe pattern in both cases migrates slowly downstream with time. 
The surface of a dissolving solid also shows many of the same types of features (Allen 
1971; Blumberg & Curl 1974). 

One might suspect that the similarity that exists among these three instability 
phenomena results from an analogy that exists among shear stress, mass transfer, 
and heat transfer for turbulent flow over a wavy surface. The analogy is, however, 
not a simple one in that each type of instability has its own peculiarities. 

In the case of a mobile bed, fluctuations in the surface shear stress are generalIy 
attributed with causing the growth of surface perturbations. Theoretical and experi- 
mental studies of the shear-stress distribution over a wavy surface (Kendall 1970; 
Zilker, Cook & Hanratty 1977) have, however, shown that the phase shift between 
shear stress and the surface profile is less than 90 degrees whereas for the shear stress 
itself to cause the instability a phase shift of more than 90 degrees is required. Kennedy 
(1969) has attributed the additional phase shift to a lag time between the increase in 
shear stress and the corresponding increase in bed transport. An alternative explanation 
is that the fluctuating component of surface pressure may have an influence on the 
saltation rate. In this regard the analysis of the instability of a phase change or a 
dissolving surface may be somewhat simpler in that the complex physics of particle 
saltation is not involved. 

It is only in the case of instability on a phase-change surface that the growth of a 
small-amplitude wave into a ripple pattern has been observed. In the case of a 
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FIGURE 1. A schematic diagram of a wavy ice surface showing the 
definition of the symbols employed in the analysis. 

dissolving surface it has been suggested tha t  a flow separation is required before 
the disturbance can grow (Allen 1971). It would therefore appear that of the three 
similar types of instability the instability on a phase-change surface is most amen- 
able to a comparison of theory and experiment. 

To explain the growth of a wave disturbance on an ice surface a mechanism must 
be found by which the heat-transfer rate at the crests of the waves could be smaller 
than that in the valleys. This is equivalent to the requirement that the phase shift 
between the heat-transfer coefficient and the surface wave profile is greater than 90 
degrees. Thorsness & Hanratty (19793) predict such a phase shift from calculations 
of heat transfer in a turbulent flow over a wavy surface. 

In  this paper the stability and subsequent wave growth of disturbances to an ice- 
water interface in the presence of a turbulent boundary-layer flow will be studied 
experimentally. By observing the instability in the presence of a well-defined flow 
regime the character and stability criterion for the waves can be accurately compared 
with predictions. 

2. Stability of an ice surface 
The general features of the physical system to be considered are shown in figure 1.  

A turbulent stream of velocity U, and temperature T, flows over an ice layer. The 
ice layer, of mean thickness do, is bounded by a cold surface at  T, on one side and by 
the ice-water interface a t  Tf on the other. The interface is assumed to be perturbed such 
that the local thickness of the ice layer, di, is given by di =do + 7, where the perturbation 
7 is expressed as 

7 = Aeat s ink(x -c t ) .  (1)  

The wavenumber k = 2n/h, A is the wavelength, c is the migration velocity of the 
wave, a is its amplification rate, and A is its amplitude at  t = 0. In subsequent calcu- 
lations the amplitude A will be normalized using the friction velocity u* such that 
A+ = A u * / v .  

Ashton (1972) suggested that if such an interface wave exists then the convective 
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heat-transfer coefficient, h, a t  the surface can be expressed as 

h = ho + hi, 

623 

where h, is again the mean value and the perturbed quantity h, is given by 

5 = f A +  eat sin [k(z - ct) + 91. (2) 
h0 

In this expression the fluctuations in the heat-transfer rate and the interface wave 
profile are related by the ratio of their amplitudes, f,  and the phase shift, q5, between 
them. Note that the phase shift 9 is positive if the heat-transfer variation is shifted 
upstream relative to the surface wave. 

A heat balance a t  the ice-water interface is given by 

where the properties of the ice are density p, heat of fusion L, and thermal conducti- 
vity ki. If the Stefan number C(Tf - T,,)/L is small the specific heat of the ice can be 
neglected. As a result the temperature in the ice is just given by the Laplace equation 

V2T = 0 (4) 

with the linearized boundary conditions 

and 
T = T,, y = 0. 

If the temperature T in the ice is separated into a mean To and a perturbed com- 
ponent T,, the solution for the temperature can be written 

( 5 )  T = To + TI, 

To = TL + (Tf - TUJ Yldo where 

and 
7 sinhky 
do sinh kd,' 

TI = - (Tf- T , )  - ~ 

Introducing ( 5 )  into the heat balance and extracting the mean-value terms gives 

where e = (q- T,)/(T, - T ~ ) .  

It will be useful to define a growth parameter which is the ratio of the heat flux away 
from the interface into the ice t o  the heat flux from the water to the interface; 
G = (k16)/(h0d0). From (6) it is apparent that G > 1 indicates an ice layer that is 
growing, G < 1 indicates an ice layer that is melting and a value of G = 1 indicates 
steady state. A value of G = 0 would correspond most nearly to the conditions of 
Ashton's (1972) experiments in which the ice slab was initially raised close to a uniform 
temperature of 0 "C and then melted. As has been pointed out by Ashton the stability 
of an ice layer will depend strongly on whether it is growing or decaying. 
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From ( 3 )  and ( 5 )  the equation for the perturbed quantities in the heat balance is 

Substituting (1) and (2) in (7) and applying the multiple-angle identities for sine and 
cosine terms results in expressions for grawth rate and wave velocity 

where k+ = kv/u*. 
If G = 0 the amplification rate given by equation (8) will be positive if cas $ < 0. 

This implies that the phase shift is in the range < $ < ~ T T .  Furthermore if the 
waves are to move downstream as is observed experimentally equation (9) implies 
that 0 < $ < m. The phase shift that would be consistent with experimental obser- 
vations is therefore one which is in the range +TT < $ < i l ~ .  Note again that this phase 
shift is measured in the upstream direction. 

There are a number of factors that could produce this phase shift. For turbulent 
flow over a wavy surface the effects of both flow acceleration and streamline curvature 
create extra strain rates which could affect turbulence properties. Bradshaw (1973) 
has suggested t h a t  of these streamline curvature is most likely to be the dominate 
effect. This is interesting since the curvature effect by itself would create a 180 degree 
phase shift and thus would be a strongly destabilizing effect. Thorsness & Hanratty 
(1979a, b )  using a model (model D) which primarily considers the effect of pressure 
gradients on the viscous sublayer, find that phase shifts of between 90 and 180 degrees 
in the upstream direction do exist for heat transfer to a wavy wall. In order to 
quantitatively test these predictions in the experiments to follow the migration 
velocity and growth characteristics of small-amplitude sinusoidal waves in an ice- 
water interface will be measured and used in equations (8) and (9) to calculatefand $. 

To analyse the experimental data in a form consistent with the theory the value 
of the friction velocity fo1 a given experiment must be known. The approach that was 
found to be most convenient for obtaining an estimate of the friction velocity made 
use of the measured mean ice thickness. The Stanton number can be related to the 
mean ice thickness 

h l k i O  v &=O=---- 
pCU, Pr k, G U,d, 

and to the friction velocity 

u*/Um St = 
U,/u*+5[(Pr-  1)+113(+(5Pr+ l))]  , 

from which the value of u* can be calculated. 

3. Experimental apparatus and procedure 
3.1. Water tunnel 

The present experiment was carried out using a closed-loop water tunnel, shown 
schematically in figure 2. The unique feature of this tunnel is that it contains a heat 
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FIGURE 2. The ice-water tunnel used in the experimental studies. 

exchanger connected t o  a refrigeration system. With th i s  system t h e  temperature of 
the water in the tunnel can be controlled a t  any value between room temperature and 
about 0.2 "C. A small, secondary circulation loop which augments the flow velocity in 
the heat exchanger ensures good heat exchange a t  low test-section velocities. The test 
section in which these tests were performed was 254 mm wide by 457 mm in height 
by 2134 mm in length. This test section had windows made of acrylic-resin plates 
which permitted photography of the ice surface. The tunnel was also operated in the 
free surface mode to  facilitate probing of the boundary layer on the ice. 

3.2. The isothermal cold plate assembly 

A copper plate 6.35 mm thick, 241 mm wide, and 1520 mm long was installed hori- 
zontally in the test section with its exposed surface facing upward. The cold plate 
and the attached equipment are shown in figure 3. The ice was grown on the exposed 
upper surface of this plate. The plate was maintained isothermal and a t  a sub-freezing 
temperature by circulating a coolant fluid (a methanol-water mixture) a t  high velocity 
beneath the plate. The coolant was drawn from a large temperature-controlled bath 
which could be controlled a t  temperatures in the range 0 to  - 19 "C. The temperatures 
of the plate, the inlet and outlet coolant, and of the bath were monitored. Owing to  
the high circulation rate under the plate these temperatures seldom differed by more 
than 1 "C. 

3.3. Formation of an  ice layer 

I n  a typical experiment the plate and tunnel temperatures as well as the free-stream 
velocity would be set and the ice layer allowed to grow to its steady-state shape. For 
the thickest ice layers this would require 2 to 3 days. A schematic profile of an ice 
layer is shown in figure 3. A step in the ice profile and a small region of separated flow 
is shown near the leading edge of the plate. This phenomenon which occurs a t  the 
transition from laminar to  turbulent flow on an ice surface was studied extensively by 
Hirata, Gilpin & Cheng (1979). For the range of parameters used in the present tests 
the 'step' transition was located 100 to  150 mm from the leading edge of the plate. 
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FIGURE 3. A detail of the cold plate assembly and the ice layer 
that forms on its surface. T.C. = Thermocouple. 

Downstream of the reattachment of the separated flow a turbulent boundary layer 
existed. If not artificially disturbed the ice in the downstream region was normally 
flat and showed no sign of instability. If, however, a disturbance of sufficient amplitude 
was made in the ice surface the interface instability developed. Two different types of 
disturbances were used. In one a groove was made in the ice perpendicular to the flow 
direction. For most tests this groove was made by melting a 13 mm diameter, heated 
copper pipe half a diameter into the ice. The shape of the groove did not, however, 
appear to be an important factor in determining the final waveform that developed 
in the ice. The groove was normally made 400 to 600 mm from the leading edge of the 
plate so as to be well downstream of the ' step ' transition. The other type of disturbance 
used was a sinusoidal wave several wavelengths long melted into the ice surface. Using 
this method the response of the surface to different wavelengths of disturbance could 
be observed. The amplitude of the induced disturbance was about 0.75 mm which for 
most of the experimental conditions studied gives a value of Au*/v equal to 20 to 30. 
Zilker et al. (1977) suggest that nonlinear effects become evident for waves in which 
Au*/v is greater than 27. 

3.4. Measurement of velocity, temperature and ice-shape projiles 

The velocity profiles above the wavy ice surface were measured with a laser-doppler 
anemometer which used an He-Ne gas laser (15 mW output) in the forward mode. 
Frequency shifting was employed on one of the beams to improve the doppler signal. 
The whole optic system was mounted on a three-axes motor-driven traversing system 
which was controlled by the data acquisition system. A thermocouple probe for 
measuring the temperature boundary layer above the ice was also mounted to the 
traversing head. The sensing element of the thermocouple was a copper-constantan 
thermocouple (76 pm diameter wire) formed in the shape of a loop about 15 mm on 
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FIGURE 4. Velocity profiles a t  various points along the 'wavy' ice surface. 
0 = 17.4, Re8 = 1-1 x lo4. -, universal velocity profile. 

the side. With the computer-controlled system a set of temperature and velocity 
profiles could be taken at  various positions along the ice surface in a time which was 
much shorter than the time required for the shape of the ice profile to  change 
significantly. 

The profiles of the ice thickness variation along the plate were also made using the 
traversingsystem. Tomake these measurements a probe which followed the ice surface 
was traversed along the ice. The vertical displacement of this probe was detected by 
a linear displacement transducer. The accuracy of this system for measuring the ice 
interface wave amplitude and wavelength was estimated to be within k 5 per cent. 

The range of conditions employed in the present tests were: 
free-stream velocity U, = 361 to  1170 mm s-l, 
free-stream temperature T, = 0.4 to 1-07 "C, 
plate temperature T, = - 11.5 to  - 19.9 "C. 

These test conditions produced Reynolds numbers based on the boundary-layer 
thickness Re, = 2.5 x 103 to  5.2 x lo4 and temperature-ratio parameters 0, = 7.4 to 44. 

4. Results 
4.1. Velocity and temperature projles 

Velocity and temperature profiles above the ice surface were measured a t  several 
positions between the crests of the small-amplitude waves occurring in near neutrally 
stable conditions. In figure 4 the velocity profiles are plotted in non-dimensional form 
uf versus y+, where the mean shear velocity was used in the non-dimeneionalization. 
The non-dimensional profiles coincide in the mean with the universal profile ; however, 
some deviations caused by the wavy surface occur a t  about y f  = 30. This corresponds 
to the outer edge of the buffer zone. 

Temperature profiles taken at the same conditions as the velocity profiles are shown 
in figure 5 .  Temperatures were normalized by pCu*. A universal temperature profile 
for Pr = 13.6 is also shown for comparison. At this Prandtl number most of the 
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FIGURE 5 .  Temperature profiles above the 'wavy' ice profile. B = 17.4, 
~e~ = 1.1 x 1 0 4 .  __ , universal temperature profile. 

temperature change occurs within the laminar sub-layer which for the present experi- 
ment was of the order of 1 mm thick. This made the accurate measurement of the 
temperature profiles within this layer very difficult. The temperature profiles could 
not, therefore, be used to  measure the variation in temperature gradient along the 
wave. 

4.2. Behaviour of small-amplitude sinusoidal disturbances 

Although the direct measurement of the variation of temperature gradient could not 
be used t'o provide quantitative data on the variation of the heat-transfer rate over 
a wavy surface, it  was found that such information could be obtained by observing 
the behaviour of small-amplitude, sinusoidal disturbances aelted into the ice surface. 
In these tests conditions of temperature and velocity near to  the neutrally stable 
condition were chosen. The migration velocity and stability of disturbance with wave- 
lengths shorter and longer than the most unstable wavelength was observed. Figure 
6 (a) shows the migration velocity as a function of wavenumber. In  the present section 
we shall concentrate on the measurements made on small-amplitude disturbances 
(solid circles) and the measurements for large-amplitude disturbances will be discussed 
later. For the small-amplitude disturbances it can be seen that the migration velocity 
varies from negative values (that is upstream migration) for small wavenumbers to 
positive (downstream migration) a t  larger wavenumbers. I n  figure 6 (b)  the regions 
of stable and unstable behaviour are shown for the same range of disturbance wave- 
numbers as was used in figure 6 ( a ) .  Also shown on this figure is the calculated damping 
factor l/tanh kd ,  from equation ( 8 ) .  Note that G = 1 for all these tests. 

At the border between unstable and stable behaviour the damping factor must be 
just equal to  the driving force for the instability f cos Q/k+. When these results are 
combined with the observed migration velocity which gives f sin $lk+,  values off and 
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k+  X lo3 
FIGURE 6. (a) Non-dimensionalized migration velocity of disturbances in the ice surface. 0 ,  
small sinusoidal disturbances ; 0, waves downstream of a large-ampIitude disturbance ; 0, 
ripple ice-surface pattern ; __ , fitted curve for f sin $ / k .  ( b )  Stability behaviour of small- 
amplitude disturbances. ---, damping factor l/tanh (kd,) ; - , fitted curve for f cos $ / k + .  

cj can be calculated. From such tests empirical functions were obtained which provided 
the best overall fit t o  the observed velocity and stability data. These functions are 

f = 50-44(k+)"435, (12a)  

(12b)  cj = 758.4 + 250.8 In k+ + 23-8(1n k+)2 .  

The migration velocity and instability function derived from the above empirical 
functions are shown in figures 6 (a)  and 6 ( b )  respectively. 

The values of the functions in equations ( 1 2 a )  and ( 1 2 b )  in the range of interest, 
k+ = 0.00075 t o  0.003, are very similar t o  those predicted by Thorsness & Hanratty 
using their model D. Values off are within 20 per cent and values of q5 are within 5 
degrees of the predictions of this model if a van Driest mean profile is assumed. 

4.3. Stability analysis 

With the functions f and cj obtained in the previous section an analysis of the stability 
conditions of an ice surface can be made for conditions other than those of the present 
experiment. Using equations (1  2a)  and ( 1 2 b )  in equation ( 8 )  a prediction of the most 
unstable values of k+,  that  is, values for which dcr/dk+ = 0, and the neutral stability 
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FIGURE 7. Stability curves based on linear stability theory and experimental functions forf and #. 
__- most unstable wavenumber, -, neutral stability condition. 

condition, 01 = 0, for various values of G and u*d,/v can be calculated. The results are 
shown in figure 7. 

For all conditions the most unstable wavenumbers lie between 0.00105 and 0.00205. 
For G = 0,  which means there is no damping effect of the heat conduction into the ice, 
the most unstable wavenumber is 0-00205. In that case, however, the range of un- 
stable wavenumbers is very large, greater than the range for which equations (12a) 
and (12 b)  are valid, and the surface is unstable regardless of the value of u*d,/v. As 
G increases the unstable domain decreases in size. With the experimentally derived 
functions f and 9 the maximum value of G for which an unstable wavenumber domain 
existed was a value G = 2.3. 

In  the remainder of the paper the response of the ice surface to large-amplitude 
disturbances will be examined. Wavenumbers and wave speeds for the waves that 
result will be compared with the small-amplitude predictions. 

4.4. Growth of the ice-water interface instability from a large-amplitude disturbance 

When a groove was made in the ice surface under unstable conditions the sequence 
of events shown in figure 8 (a )  (plate 1) occurred. In each photograph the lower light- 
coloured region is the ice and the upper dark region is the water. At time t = 0 the 
disturbance in the form of a semi-circular groove can be seen. As time proceeds the 
downstream face of the groove melts away, producing a longer groove. At the same 
time the ice just downstream of the groove actually thickens slightly. Further down- 
stream about 150 mm from the original groove a second depression begins to  develop 
a t  about 2 to 3 hours. This sinusoidal wave pattern spreads downstream, developing 
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FIGURE 9 (a). For legend see page 634. 

into a number of discernible wavelengths as time goes on. The amplitude of the waves 
also increases until a t  about t = 3 h the first wave downstream of the original groove 
‘breaks’, that is, it  develops a sharp crest. Subsequent waves also develop the sharp 
crests, at  which time further changes in the wave amplitude cease. The waves do, 
however, continue to migrate slowly downstream. This quasi-steady wave pattern 
will be referred to as the ‘ripple’ pattern. This wave pattern is very precisely two- 
dimensional with the crests of the waves running perpendicular to the flow direction. 
Downstream of the crest of each wave is a region of separated flow. The photograph 
in figure 8 ( b )  (plate 2) shows the flow pattern over the waves. The ‘breaking’ of the 
waves is therefore associated with the formation of a flow separation on the down- 
stream face of sinusoidal wave. 

The nature of the quasi-steady wave pattern on the ice surface depended on the 
velocity and temperature conditions at  the ice surface. In particular it depends on 
the stability of the ice surface. In figure 9(a ) - (d )  the effects of a disturbance on an 
initially smooth ice surface are shown for various conditions of stability. The profiles 
shown in these figures were made by traversing a probe over the ice surface at  various 
times after a groove was melted in the ice. 

The ice surface was considered to be stable if it  reverted to a smooth surface some 
time after the groove was made. This situation is shown in figure 9 (a) .  Alternatively 
for near neutrally stable conditions, figure 9 ( b ) ,  the groove persisted and the ice 
downstream of the original groove took on a smooth sinusoidal (‘wavy’) shape. The 
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FIGURE 9 ( b ) .  For legend see page 634. 

waves downstream of the original groove did not, however, grow to an amplitude a t  
which they would induce flow separations. For a more unstable condition, figure 9 (c), 
the downstream waves grow to a larger amplitude. It can be seen in figure 9(c)  that 
a t  t = 7 h the waves have developed higher harmonics in their waveform as the 
troughs of the waves are sharper than the crests. For these conditions a flow separation 
or ‘breaking’ of the second or third wave downstream of the original groove was 
a common occurrence. The wave shape with just some of the waves showing a 
sharp crest indicative of a separated flow was called a ‘partially rippled’ interface. 
A t  more unstable conditions the fully developed ‘ripple ’ interface shown in figure 8 ( a )  
was observed. Ice profiles for this condition, figure 9(d) ,  show that a very regular 
series of ripples eventually develops from the original single groove. By t = 16 h in 
figure 9 ( d )  the ripple pattern had extended the full length of the ice surface and there 
appears to be no reason to believe that it would not continue to propagate indefinitely 
downstream given a sufficient long ice surface. Even further increases in the instability 
of the surface resulted in a transition from a two-dimensional to a three-dimensional 
‘ripple’ pattern. In the three-dimensional pattern the ice surface had a sculptured 
texture in which the wave crests formed arcs rather than straight lines. 

The ‘wavy’ interface pattern has been reported by Ashton & Kennedy (1972) in 
studies of the transient melting of an ice slab in a laboratory flume. The three- 
dimensional ripple pattern is, however, the one most commonly reported from field 
observations of the bottom of ice covers (Larsen 1969, 1973; Carey 1966). This pattern 
has also been shdied in the laboratory by Hsu (1973). 
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4.5. Growth of large-amplitude waves 
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In figure 10 the amplitude of the ice-surface waves downstream of the original groove 
is shown as a function of time for both the near neutrally stable and for highly unstable 
conditions. The amplitude of the waves has been normalized by the mean thickness 
of the ice layer. 

For the neutrally stable conditions it can be seen that some initial growth of the 
wave occurs; however, their amplitude stabilizes around A l d ,  = 0.07. The waveform 
in this case is that shown in figure 9 (b ) .  The non-dimensional amplitude Au*/v was 
always between 20 and 30 for these cases, which from Zilker & Hanratty ( 1  979) should 
not be a large enough value for nonlinear effects to cause a cessation of growth. What 
appears to happen in this case is that the wavelength of the disturbances increases 
with time until the waves reach the lower wavenumber for neutraI stability, figure 
6 ( b ) ,  and this causes further growth of the wave amplitude to cease. 

For the more unstable conditions where a ‘ripple ’ pattern develops the amplitude 
increases more rapidly with time and obtains a larger value. The growth of higher 
harmonics in the waveform, as seen in figure 9 (c ,  d ) ,  appears to be a very important 
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FIGURE 9. (a) Response of the ice surface to a large-amplitude disturbance under stable conditions 
0 = 10.6, Re8 = 2.5 x lo4. ( b )  Development of the ‘wavy’ ice surface downstream of a large- 
amplitude disturbance under near neutrally stable conditions. I3 = 15.0, Re8 = 1 . 4 ~  lo4. 
(c) Development of a ‘partially rippled ’ ice surface under somewhat unstable conditions. 
0 = 16.8, Re8 = 4 x lo4. (d )  Development of a ‘rippled’ ice surface under strongly unstable 
conditions. 0 = 44.0, Re8 = 2.6 x lo4. 
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FIGURE 10. Growth of ice-wave amplitude under ‘wavy ’ and ‘rippled’ ice-surface conditions. 
0 ,  I3 = 25.0, Re8 = 1.8 x lo4, ‘rippled’; 0, I3 = 24.0, Re8 = 2.6 x lo4, ‘rippled’; A, 0 = 11-9, 
Re8 = 2.8 x lo4,  ‘wavy’; 0, I3 = 15.0, Reb = 1.4 x lo4, ‘wavy’. 
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FIGURE 11. Wavenumbers of ice-surface waves under various conditions. 0, onset of ‘wavy’ 
pattern downstream of a large disturbance ; 0,  fully developed ‘rippled ’ ice-surface pattern ; 
A, ‘wavy’ pattern in a flume (Ashton 1972); 0, ‘rippled’ pattern in a river (Larsen 1973). 

part of the growth of waves to these larger amplitudes. Once the waves ‘break’, 
that  is, a flow separation occurs a t  the wave crest, the amplitude of the waves ceases 
to  increase and may in fact decline slightly. The maximum amplitude of the ‘ripple’ 
pattern appeared t o  be limited t o  between 0.2 and 0.3 of the ice thickness. 

4.6. Wavenumber and wave speed 

The linear stability theory suggested. that  the wavenumbers when expressed in the 
form kf = 2nv/(hu*) should be relatively insensitive to  other conditions of the flow. 
I n  figure 11 the wavenumbers calculated in this form for a wide range of Reynolds 
numbers and from several different sources are shown. For the data from the present 
experiments a Reynolds number based on the measured boundary-layer thickness was 
used. For the flume data (Ashton 1972) and the river data (Larsen 1973) a Reynolds 
number based on the channel depth was employed. Also for the latter type of data 
the friction velocity was estimated from the empirical friction factors for channel flow. 
For the present experiments the onset wavenumbers of the waves created downstream 
of a large disturbance (open circles) agree very well with the predicted values of the 
most unstable wavenumbers for G = 1. The wavenumbers observed by Ashton (1972) 
for a ‘wavy’ ice surface in a flume are also consistent with the fact that  the ice layer 
in those tests was decaying, that  is, i t  was somewhere in the range G = 0 to 1. 

The ‘ripple’ ice pattern in the present experiment had a significantly lower wave- 
number than the ‘wavy’ ice pattern. This occurred not because the wavelength for a 
given now condition was significantly different, but rather because the friction velocity 
was larger over the rough surface created by the wave. The river data for wavenumbers 
of the ripple pattern (Larsen 1973) again applies t o  a situation where G is not known 
but is probably in the range 0 to 1. The wavenumbers calculated for these waves are 
similar to  those obtained in the laboratory for the ‘ripple’ pattern. 

I n  figure 6 ( a )  the migration velocity observed for waves resulting from large-ampli- 
tude disturbances has been plotted for comparison with the previous small-amplitude 
results. It appears that  the migration velocity in all cases is reasonably well predicted 
by the small-amplitude theory. The velocity of the ‘ rippled’ ice-surface pattern, which 
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FIGURE 12. Waveforms that result from large disturbances at various stability conditions. 
A, stable behaviour ; 0, ' wavy ' ice ; 0, 'partially rippled ' ice ; 0, ' rippled ' ice ; ---, stability 
criterion, equation (14). 

is about one fifth of the velocity of the 'wavy' surface pattern, is consistent with the 
smaller wavenumbers &hat occur in the former case. These measurements are also 
consistent with the flume tests of Ashton (1972) .  Normalized in *he same way the 
migration velocity from his observations for a 'wavy' ice surface was 2.08. 

4.7. Stability conditions 

In  figure 7 the stability criterion found for a small-amplitude disturbance on a steady- 
state ice layer (G = 1 )  was approximately u*d,/v = 350. For comparison with the 
effects of large-amplitude disturbances it would be desirable if this condition could be 
translated into a condition on the more accessible parameters of temperature and 
Reynolds numbers. This, however, requires a knowledge of the relationship between 
friction velocity and Reynolds number for the unperturbed surface. In  the present 
experiment the friction velocity was calculated from the ice thickness and the 
boundary-layer thicknesses were estimated from the measured velocity profiles. From 
these results a correlation for the friction velocity on the ice surface 

u*/Um = 0.229Ref0'132 ( 1 3 )  

was obtained. Using this correlation in equations (10) and (11)'  the criterion for 
stability of a steady-state ice surface becomes 

350(kw/ki) Pr ' < 4-37Re: '132+5[ (Pr -  I ) + l n ( $ ( 5 P r +  I))]' 

In  figure 12 this criterion is shown and compared with the waveforms that result 
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FIGURE 13. Heat transfer (Stanton number) on an ice surface. A ,  smooth ice; 0, ‘wavy’ ice; 
0, ‘rippled’ ice; -, Stanton number given by empirical friction velocity, equation (13). 

from a large-amplitude disturbance a t  various values of B and Re,. From this figure 
it can be seen tha t  Re, is not an important parameter in determining the stability and 
that the stability limit is approximately given by a value of the temperature para- 
meter 8 = 12 regardless of Re,. It will also be noted that the stability limit based on 
small-amplitude disturbances, equation ( 14), is consistent with the observed behaviour 
of large-amplitude disturbances. This is somewhat surprising in that one might have 
thought that a disturbance large enough to cause a flow separation might have been 
unstable in a surface that would be stable for a small-amplitude disturbance. This 
does not appear to be the case. 

4.8.  Heat-transfer rate at an ice surface 

One of the significant practical consequences of the ice-surface instability is its effect 
on heat-transfer rates a t  the ice surface. In figure 13 the Stanton number calculated 
from equation (10) is plotted as a function of Re,. The values for the undisturbed 
surface, which are consistent with equation (13), are shown. It can be seen that the 
values for the ‘wavy’ surface pattern are not measurably different from this. The 
heat-transfer rates for the rippled surface are; however, 30 to  60 per cent larger than 
that for the undisturbed surface. The flow separations that occur on each wave 
undoubtedly are responsible for this enhanced heat-transfer rate. As was noted by 
Hirata, Gilpin & Cheng (1979) the heat-transfer rate to the undisturbed ice surface 
is already 30 to  40 per cent higher than that for a flat plate of an equivalent length 
owing to the flow separation that occurs a t  the transition from laminar to turbulent 
flow. 
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5. Conclusions 
An ice-water interface in the presence of a turbulent boundary-layer flow was 

observed to be unstable under some conditions. The dominant factor that controlled 
when and if an instability occurred was the heat flux from the interface into the ice. 
This heat flux provided the damping factor in the wave growth equation. Generally 
the interface is most likely to be unstable during melting, when this heat flux is small, 
and least likely to  be unstable during ice accumulation, when the heat flux is large. 
Unstable behaviour was predicted, however, for conditions of ice accumulation 
provided the ratio of ice-side to water-side heat fluxes is less than 2-3. Under steady- 
state conditions where these heat fluxes are equal the temperature ratio parameter 
t3 = (T,- Tw)/(Tm - q), which is directly proportional to the ice-layer thickness, was 
found to be the controlling factor. For values of 0 in excess of 12 instability was 
observed. 

The results presented here strictly apply only for the case where a turbulent boun- 
dary-layer flow is present. Although other flows such as channel flows (Ashton 1972; 
Hsu 1973) and pipe flows (Gilpin 1979) have been observed to exhibit similar types of 
instability, the conditions for the instability to occur in these flow geometries have not 
been fully investigated. It may be speculated that some of the same controlling factors 
are important, that is, how thick the ice layer is and whether it is growing or decaying, 
although the specific instability conditions may vary considerably from one geometry 
to  the next. In  any case it would be highly desirable to know whether or not the 
interface is stable in a given problem since the existence of the instability has major 
consequences for efforts to develop techniques for analysing problems of phase 
change in the presence of a turbulent flow. 

This work was supported by the Natural Sciences and Engineering Research Council 
of Canada. 
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FIGURE 8. (a )  Photographs showing the development of an  ice surface wave. 6 = 35.6, 
Res = 4.5 x iV. ( b )  Flow visualization over a ‘rippled’ ice surface. P = 35.0, Res = 1.4 x lo4. 
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